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ABSTRACT

Cognitive radio offers the promise of intelli-
gent radios that can learn from and adapt to
their environment. To date, most cognitive radio
research has focused on policy-based radios that
are hard-coded with a list of rules on how the
radio should behave in certain scenarios. Some
work has been done on radios with learning
engines tailored for very specific applications.
This article describes a concrete model for a
generic cognitive radio to utilize a learning
engine. The goal is to incorporate the results of
the learning engine into a predicate calculus-
based reasoning engine so that radios can
remember lessons learned in the past and act
quickly in the future. We also investigate the dif-
ferences between reasoning and learning, and the
fundamentals of when a particular application
requires learning, and when simple reasoning is
sufficient. The basic architecture is consistent
with cognitive engines seen in Al research. The
focus of this article is not to propose new
machine learning algorithms, but rather to for-
malize their application to cognitive radio and
develop a framework from within which they can
be useful. We describe how our generic cognitive
engine can tackle problems such as capacity max-
imization and dynamic spectrum access.

INTRODUCTION

In today’s literature, cognitive radio is often
treated as a buzz word rather than a scientific
term since it has been used by so many different
people to mean so many different things. The
most generally accepted definition is a radio that
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can sense and adapt to its environment. The
term cognitive implies awareness, perception,
reasoning, and judgment. However, nowhere is
learning required.

So far this has fueled much research into pol-
icy-based cognitive radios. These are radios
whose operation is governed by a reasoning
engine that examines the current state of the
environment and makes decisions on how the
radio should operate. An example of this might
be an IEEE 802.11 modulation controller that
switches from 16-quadrature amplitude modula-
tion (QAM) to quaternary phase shift keying
(QPSK) to binary PSK (BPSK) as the signal-to-
noise ratio (SNR) decreases [1].

Generic learning-based cognitive radio is a
relatively unchartered research area. Various
projects have used techniques such as genetic
algorithms to evolve radio parameters with the
goal of optimizing performance [2]. In contrast,
this article examines the fundamentals of learn-
ing and reasoning, and proposes an architecture
to use them together. We then apply the frame-
work to two common problems in cognitive
radio: capacity maximization and dynamic spec-
trum access.

In this article we describe the cognitive radio
architecture, and discuss reasoning and learning
engines. We then describe applications and how
they work with the described model, and outline
our cognitive radio implementation. We then
conclude the article.

COGNITIVE RADIO ARCHITECTURE

A software radio (SR) can be defined as a radio
implemented with generic hardware that can be
programmed to transmit and receive a variety of
waveforms. Cognitive radio is often thought of
as an extension to software radio, and here we
treat it as such. A cognitive radio extends a soft-
ware radio by adding an independent cognitive
engine, composed of a knowledge base, reason-
ing engine, and learning engine, to drive soft-
ware modifications. A well defined application
programming interface (API) dictates communi-
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The SR exports
variables that are
either read-only or
read-write. The
read-only parameters
represent stafistics
maintained by the
SR, such as signal to
noise ratio or bit
error rate. The read-
wrife variables repre-
sent configurable
parameters such as
fransmit powe,
coding rate, or
symbol constellation.

! Note the commonly used
notation in predicate cal-
culus is as follows: logical
AND is a, logical OR is v,
and logical NOT is —.

2 We mostly consider sce-
narios that use forward
chaining rather than
backward chaining for
inferencing, since often we
do not have a particular
goal state.

Radio parameters and
statistics are exported to
knowledge base as predicates
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B Figure 1. Cognitive radio architecture showing the interactions between the software radio, knowledge

base, and policy and learning engines.

cation between the cognitive engine and the SR.
Figure 1 illustrates this architecture and the
interaction between various components.

At any given time, the cognitive engine gen-
erates conclusions based on information defined
in the knowledge base, the radio’s long-term
memory. These conclusions are the result of
extrapolations of this information based on rea-
soning or learning. The reasoning engine is what
is often referred to in artificial intelligence (AI)
literature as an expert system. The learning
engine is responsible for manipulating the knowl-
edge base from experience. As lessons are
learned, the learning engine stores them in the
knowledge base for future reference by the rea-
soning engine. Depending on the application,
the learning engine may only be run to train a
newly initialized radio, or it could be run period-
ically as the radio operates.

The following sections describe each of the
two engines in more detail.

REASONING AND PLANNING

The SR exports variables that are either read-
only or read-write. The read-only parameters
represent statistics maintained by the SR, such
as SNR and bit error rate. The read-write vari-
ables represent configurable parameters such as
transmit power, coding rate, and symbol constel-
lation.

These radio parameters are bound to predi-
cates in the knowledge base. Knowledge bases
are very common in Al planning. The one we
describe here contains two basic data structures.
The first is a logic expression made up of predi-
cates that represents the state of the environ-
ment. Predicates are expressions in first-order
logic that evaluate to either true or false.

The second set of data contained within the
knowledge base is actions. Actions define opera-
tions the reasoning engine could perform to
change the state of its environment. Actions con-
sist of a set of preconditions and postconditions.
Preconditions must be inferable from the knowl-
edge base and evaluate true for the action to be
selected. An action’s postconditions describe the
modified state of the knowledge base.

To better illustrate this discussion, consider

the following example, the objective of which is
to decrease the modulation rate with a decrease
in SNR.

The knowledge base contains the following
predicates:!

modRate(QPSK) A snr(5 dB) (1)

and the following action

action: decreaseModulationRate
precond: modRate(QPSK) A snr(< 8 dB) 2)
postcond: —modRate(QPSK) A modRate(BPSK)

The reasoning engine uses planning, which is
a field of Al that works with logic.2 At any given
time, it looks at the current state and determines
which actions are executable in that state. All
the possible resulting states are then evaluated
to see which is optimal, where optimality is
determined by an objective function fz(-).

In our current example, we can successfully
infer the preconditions from our knowledge-
base. As a result, the decreaseModulationRate
action is executed and the postconditions are
applied to the knowledge-base, resulting in

KB’ = KB A postcond
= (modRate(QPSK) A snr(5 dB)) A 3)
(— modRate(QPSK) A modRate(BPSK))
= modRate(BPSK) A snr(5 dB)

Observe how modulation is changed from
QPSK to BPSK when the SNR drops below 8
dB. While this example may seem elementary, it
provides the fundamentals for reasoning in our
cognitive radio.

This example also illustrates the necessity for
a learning engine. In complex radios with many
inputs and many outputs, a countless number of
actions would be necessary to account for all
possible radio states. Rather than preprogram-
ming this list of actions, the learning engine
should auto-generate these actions based on
experience.

LEARNING
The learning engine is responsible for augment-
ing the list of actions available to the radio that
allow it to adapt to a changing environment.
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M Figure 2. Configuration of a basic simplex cognitive radio communications link.

Many different learning algorithms are available
to a cognitive radio, including hidden Markov
models [3], neural networks [4], and genetic
algorithms [5].

Nearly every learning technique involves the
use of an objective function to determine the
value of the learned data. In a cognitive radio,
these objective functions reflect the overall goal
of the application, such as maximizing channel
capacity. The goal of the learning engine is to
determine which input state will optimize the
objective function. However, unlike the objective
function used by the reasoning engine, there is
no simple mathematical relationship between the
system inputs and the objective function.

In order for learning to be necessary, the
precise effects of the changing inputs on the
outputs must not be known. This is often the
case in non-ideal radio channels. For example,
we typically know that decreasing coding rate
will also decrease bit error rate, but we do not
necessarily know by how much for an arbitrary
communications channel. Using a learning
engine, we can estimate our channel statistics;
then, using that data, we can make decisions
that are optimal for our current radio frequency
(RF) environment.

More formally, we define the radio’s state-
space S. A particular state s € $is made up of
both the radio’s input predicates i and output
predicates o. That is, s =i A 0.

We have an objective function f; : $ — R that
can be evaluated on a particular state s € $ and
returns a real number. State s; is preferable to
state s; if f7.(s1) > f1.(s2)-

The learning algorithm will try to precisely
characterize f7(-) in an effort to find an optimal
state. For example, a neural network using unsu-
pervised learning could try to find statistical cor-
relations between inputs and outputs to come up
with a mathematical representation of f7 (-).

Similarly, evolutionary techniques such as
genetic algorithms could evolve the radio’s state
in order to maximize the objective function.
After each state change, the resulting state is
evaluated. This process continues until a globally
optimal state is found.

Let us assume that the learning algorithm
evaluated N different inputs iy, iy, ..., iy with
resulting outputs 01, 0y, ..., oy before finding the
optimal one. This implies that

fL(iN A ON) ZfL(in A On) Vi<n<N-1. (4)

Thus, we now know that if our radio is ever
in state iy A 01, ..., iN_1 A ON_1, the optimal
behavior is to set the radio inputs to iy. This

equates to our learning engine generating the
following actions for the policy engine:

action: learnedActionX
precond: Vn <N - 1i, Ao, 5)
postcond: — i, A iy.

If the radio environment changes, however,
oy may not result from iy, and iy may no longer
be optimal. If this occurs, the learning engine
should be aware of the changes and remove the
suboptimal learned action from the knowledge-
base. This can be expressed as

action: unlearnActionX
precond: iy A =0y (6)
postcond: —learnedActionX.

The cognitive process, both reasoning and
learning, is then reinstatiated in search of a new
optimal state. The next section describes con-
crete instantiations of the policy and learning
engines for particular applications.

APPLICATIONS

In this section we describe several applications
of learning to real radio problems. For each
application, the inputs and outputs of the SR are
defined, along with an objective function. We
then describe strategies for how a cognitive radio
can solve the problem.

All the applications assume the basic commu-
nications architecture shown in Fig. 2. This
architecture defines a simplex link between a
source and a destination SR. The source radio
has a cognitive engine that controls the source
radio’s parameters, and uses the existing link to
exchange configuration information (e.g., modu-
lation scheme, frequency, or bandwidth) and
statistics (e.g., noise power or bit error rate).

In order for this system to work, we must
assume that both the master and slave radio
start off with the same initial configuration c.
When the cognitive radio decides a change to
configuration c; 41 is necessary, the master SR
sends a message containing c¢; 4+ to the slave
using configuration ¢;. A simple example of this
would be a frequency hopping radio system
where a hop to frequency f;,1 is signaled by
sending a control message at frequency f;.

To extend this basic architecture to a duplex
link between two SRs, a cognitive radio engine
can be added to the second radio. However,
here we assume that each cognitive engine acts
as an independent agent controlling only out-
bound data and not communicating with other
cognitive radio engines.

Evolutionary
fechniques such as
genetic algorithms

could evolve the
radio’s state in order
fo maximize the
objective function.
After each state
change, the resulfing
state will be
evaluated. This
process confinues
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To extend this model to a multiparty or ad
hoc network, each radio would maintain inde-
pendent state in its cognitive radio engine for
each destination node, as each pairwise directed
communications channel could have different
properties. Certainly these channels are not
completely independent, so some shared state
can be used to more quickly find optimal solu-
tions.

CAPACITY MAXIMIZATION IN AN AWGN CHANNEL

One very typical application of cognitive radio is
to create a radio that can adapt to a channel to
maximize its overall performance. Here we
assume a fixed power, frequency, and bandwidth,
since these parameters are more commonly
thought of as being within the realm of dynamic
spectrum access, detailed later.

Thus, here we try to select a modulation type
and coding rate to maximize capacity. For an
additive white Gaussian noise (AWGN) channel,
we can compute channel capacity using the
Shannon-Hartley law [6], and our goal is to find
a modulation type and coding rate that can get
us as close to capacity as possible.

Let us assume we have M modulation types
My, My, ..., My and N coding types Cy, Cy, ..., Cy.
Modulation type M; can transmit d; data bits per
symbol and has a probability of bit error ¢;(S)
for SNR S. Coding type C; has rate r; and can
correct ¢; bit errors per block of size b; bits. For
this application we assume an AWGN channel;
therefore, ¢;(S) can be computed directly [6].

Our goal is to maximize capacity, so our
objective function should reflect the capacity of
our channel. For an arbitrary input configuration
M; A C;, we can compute channel capacity C;; by
computing the raw data rate multiplied by the
probability of not receiving ¢;4 or more bit
errors. This results in a suitable objective func-
tion fg(-).

Thus, our goal is to find values M; and (; that

maximize the objective function subject to our
environment’s SNR S.

A key thing to notice here is that our radio
output predicate snr(S) is independent of our
inputs, and as a result, a pure policy-based radio
can be used. The learning engine is not neces-
sary. Given the above-defined objective function,
the cognitive radio’s reasoning engine can deter-
mine the optimal radio operating parameters.

A knowledge base for maximizing channel
capacity can be composed with several basic
actions. The first can be used to set the modula-
tion type.

action: switchModType(A,B)
precond: modType(A) (7)
postcond: —modType(A) n modType(B).

The second can be used to set the coding
type.

action: switchCodeType(A,B)
precond: codeType(A) (8)
postcond: —codeType(A) A codeType(B).

The reasoning engine will start with the initial
state and derive all possible resulting states
achievable with the above two actions. For all
resulting states, the objective function will be
evaluated, and the radio will then execute the
actions that lead to that state. In this section our
key assumption is an AWGN channel where
¢;(S) can be derived for every possible modula-
tion scheme. In the next section we look at a
channel where ¢;(S) is not known, and learning
algorithms must be used.

CAPACITY MAXIMIZATION IN A
NoN-AWGN CHANNEL

In the previous section we examined the prob-
lem of capacity maximization for an AWGN
channel. We demonstrated that a cognitive radio
can perform this without using a learning engine
since the radio outputs were independent of the
radio inputs. In this section we consider a non-
AWGN channel with fading non-Gaussian noise
and interference. In this channel we cannot
know how any given modulation and coding
scheme will perform without first trying it.

In order to avoid a brute force search, we must
assume a continuous convex solution space. To
achieve this, there is a logical ordering of modula-
tion types and coding types that results in a contin-
uous convex objective function, such that if we
evaluate the objective function for modulation type
M; and find it to be less than M;,, the objective
function evaluated for M;,_; must be less than M,.

This will allow the use of an algorithm that
performs a gradient search to find the objective
function maxima. If the solution space is not
continuous and convex, it does not mean we can-
not find a solution, only that we cannot find it as
quickly.

In this application our objective function will
depend heavily on our outputs. Assuming our
slave SR can measure the corrected bit success
rate coming out of the decoder, the resulting
capacity is the product of our bit success rate, cod-
ing rate, and raw modulation data rate. As before,
we can use this as our objective function f (-).

As an example, a sample objective function
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has been plotted in Fig. 3 for various modulation
types and coding rates. Since it is convex, hill
climbing will efficiently yield an optimal configu-
ration.

DYNAMIC SPECTRUM ACCESS

Dynamic spectrum access (DSA) involves locat-
ing frequency bands and times when a cognitive
radio can transmit without causing harmful
interference to other transceivers [7]. For exam-
ple, consider a cognitive radio network operat-
ing in the UHF television bands, where
transmission is permissible provided devices can
guarantee they will not interfere with licensed
broadcasts.

More concretely, the goal is to locate center
frequencies, bandwidths, and times when a cog-
nitive radio can transmit, while maximizing
capacity and minimizing interference. This type
of problem is very different from capacity maxi-
mization where we wanted to learn how our
radio inputs affected our radio outputs. DSA
involves learning where and when other radios
will be transmitting.

If we assume all signals with which we are
trying to coexist are continuous in time, the
problem simplifies to one solvable by a policy-
based radio. Imagine our SR exports predicates
to the knowledge base regarding detected signals
S1, 82, ..., Sy that are of the form

signalFreq(s;, f;) A signalBW(s;, W;). 9)

Our goal is to find some f, and W that do not
overlap any detected signal, while maximizing W
and consequently the radio’s capacity.

First, let us assume we have a helper function
notOverlap(f,, W, s;) that evaluates to true if the
band occupied by a signal centered at f. with
bandwidth W does not overlap signal s;. Then we
can define our predicate,

action: moveBand (fy1q, Wo1ds fnews Wnew)

precond: Vi < N notOverlap(fueys Whews Si)
(centerFreq(f{old) A bandwidth(W,;;))

postcond: —(centerFreq(fy;q) A bandwidth(W,;))
A (centerFreq(frey) A bandwidth(W,,,,)).

(10)
Then we define our objective function,
fr(centerFreq(f,) A bandwidth(W)) = W. (11)

We now have a policy-based cognitive radio that
will search out the largest continuous piece of
bandwidth for communication.

In more complex noise and interference envi-
ronments, this approach is too simplistic, as dif-
ferent frequency bands may have different noise
floors. Extension to this environment will require
the use of a learning engine. Imagine our SR
exports predicate snr(S) for the currently tuned
center frequency and bandwidth. This gives us
more information, and we can define a better
objective function based on the Shannon-Hartley
law:

fr(centerFreq(f,) A bandwidth(W) A snr(S)) (12)
= Wlogy(1 + §).

This learning objective function can only be eval-
uated when S is known, and this can only be
computed after the radio has been tuned to cen-
ter frequency f..

Licensed signal channel access

Frequency
L]
[

v

Time
Secondary user channel access

M Figure 4. Example showing cognitive radio coexisting with bursty signals in
both frequency and time.

Another interesting extension to this idea is
to consider non-continuous signals, such as ones
using time-division multiple access. For these sit-
uations, we can coexist not only in frequency but
also in time. Using various cyclostationary statis-
tical learning algorithms [8], we can compute the
expected length of channel vacancy and incorpo-
rate that into our decision making.

Imagine a neural network has computed for
us the probability P;(¢) that signal s; is transmit-
ting at time ¢, where the probability is periodic
over time 1;. Our learning engine can then export
to the knowledge base predicates describing this
signal.

signalFreq(s;, f;) ~ signalBW(s;, W;)
A (Vt < 1, Pi(t) > o signalON(s;, t) 13)
A (Vt < 1, P(t) < o signalOFF(s;, t).

A threshold o is used to indicate that the sig-
nal is present with very low probability. We can
now extend our notOverlap function to take into
consideration whether s; is transmitting at time ¢,
and our radio can compute its optimal course of
action.

action: moveBand (fy1q9, Woids fnews Wnew)
precond: Vi < N : notOverlap(fes Wew, Si» t)
postcond: —(centerFreq(f,q) A bandwidth(W,;))
A (centerFreq(fyey) A bandwidth(W,,,))
(14)

We can use the same objective function as
before, or incorperate SNR if necessary.

IMPLEMENTATION

To build on the ideas developed in this article,
we have implemented a cognitive radio based on
a generic cognitive engine [9]. It combines
OSSIE, which is an open source software com-
munications architecture (SCA) core framework
implementation from Virginia Tech, with the
Soar cognitive engine from the University of
Michigan.

Within it we have implemented both the poli-
cy-based capacity maximization and the learning-
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based capacity maximization. The radio achieves
the optimal configuration of modulation and
coding in an environment with time-varying
noise power (Fig. 5). One of the biggest factors
to consider in an implementation is adaptation
time. The more intelligence you put behind the
decision making process, generally the slower it
is. If your cognitive engine is constantly running,
searching for better radio configurations, it can
utilize a significant portion of your processor
time. Our policy radio adapts on the order of
tens of milliseconds, while our learning radio
adapts on the order of hundreds of milliseconds.
We are currently working to implement dynamic
spectrum access and adaptation to interference
and fading channels within OSCR.

CONCLUSION

Since the introduction of cognitive radio in 1999
[10], there have been many high-level discussions
on proposed capabilities of cognitive radios. In
this article we have tried to formalize some of
the architecture behind these ideas and the
applications for which they are most suited, and
give some insight into the differences between
reasoning and learning.

Certainly there is a great deal of future work
in the field of cognitive radio, and in particular
applications of machine learning to cognitive
radio. The architecture described here is flexible
enough to address many different applications
provided they can be expressed in predicates,
actions, and objective functions. The real work
will be mapping potential applications to predi-
cate calculus.
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